Orientation estimate for mobile robots using gyroscopic information
نویسندگان
چکیده
An error model for a solid-state gyroscope developed in previous work is included in a Kalman filter for improving the orientation estimate of a mobile robot. Orientation measurement with the error model is compared to the performance when no error model is incorporated in the system. The results demonstrate that without error compensation, the error in localization is between 5-15"/min but can be improved by a factor of 5 to 7 if an adequate error model is supplied. Results from tests of this gyroscope on a large outdoor mobile robot system are described and compared to the results obtained from the robot's own radar-based guidance system. Like all inertial systems, the platform requires additional information from some absolute position sensing mechanism to overcome long-term drift. However, the results show that with careful and detailed modelling of error sources, low cost inertial devices can provide valuable orientation and position information particularly for outdoor mobile robot applications.
منابع مشابه
Mobile Robot Navigation Error Handling Using an Extended Kalman Filter
Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...
متن کاملMobile Robot Navigation Error Handling Using an Extended Kalman Filter
Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...
متن کاملAre Autonomous Mobile Robots Able to Take Over Construction? A Review
Although construction has been known as a highly complex application field for autonomous robotic systems, recent advances in this field offer great hope for using robotic capabilities to develop automated construction. Today, space research agencies seek to build infrastructures without human intervention, and construction companies look to robots with the potential to improve construction qua...
متن کاملTrajectory Tracking of Two-Wheeled Mobile Robots, Using LQR Optimal Control Method, Based On Computational Model of KHEPERA IV
This paper presents a model-based control design for trajectory tracking of two-wheeled mobile robots based on Linear Quadratic Regulator (LQR) optimal control. The model proposed in this article has been implemented on a computational model which is obtained from kinematic and dynamic relations of KHEPERA IV. The purpose of control is to track a predefined reference trajectory with the best po...
متن کاملCorrection of Odometry Errors in a Group of Mobile Robots
In the paper a new approach to calibrating a group of mobile robots in order to reduce systematic odometry errors is presented. During their motion the vehicles estimate its own position and orientation as well as parameters responsible for systematic errors. The estimates of these values are obtained from an extended Kalman filter, which uses internal encoder readings as inputs and relative me...
متن کامل